1,225 research outputs found

    Transient superdiffusion in correlated diffusive media

    Get PDF
    This is the author accepted manuscript.Diffusion processes are studied theoretically for the case where the diffusion coefficient is itself a time and position dependent random function. We investigate how inhomogeneities and fluctuations of the diffusion coefficient affect the transport using a perturbative approach, with a special attention to the time scaling of the second moment. We show that correlated disorder can lead to anomalous transport and superdiffusion

    One size doesn’t fit all

    Get PDF
    This is the author accepted manuscript. The final version is available from Springer nature via the DOI in this record

    Properties of entangled photon pairs generated in one-dimensional nonlinear photonic-band-gap structures

    Full text link
    We have developed a rigorous quantum model of spontaneous parametric down-conversion in a nonlinear 1D photonic-band-gap structure based upon expansion of the field into monochromatic plane waves. The model provides a two-photon amplitude of a created photon pair. The spectra of the signal and idler fields, their intensity profiles in the time domain, as well as the coincidence-count interference pattern in a Hong-Ou-Mandel interferometer are determined both for cw and pulsed pumping regimes in terms of the two-photon amplitude. A broad range of parameters characterizing the emitted down-converted fields can be used. As an example, a structure composed of 49 layers of GaN/AlN is analyzed as a suitable source of photon pairs having high efficiency.Comment: 14 pages, 23 figure

    Comment on Ricci Collineations of Static Spherically Symmetric Spacetimes

    Get PDF
    We present a counter example to a theorem given by Amir {\em et al.} J. Math. Phys. {\bf 35}, 3005 (1994). We also comment on a misleading statements of the same reference.Comment: 4 pages,LaTex fil

    Optimal position of an emitter in a wavelength-scale parabolic reflector (article)

    Get PDF
    This is the final version. Available on open access from the Optical Society of America via the DOI in this recordThe dataset associated with this article is available in ORE at https://doi.org/10.24378/exe.1883, with the title 'On the optimal position of an emitter in a wavelength-scale parabolic reflector'We investigate the optimum emitter position within reflecting parabolic antennas whose size is comparable to the emission wavelength. Using finite-element modeling we calculate the dependence of the amount of power directed into a 20° half-angle cone on the emitter’s position and compare with results obtained using geometrical optics. The spatially varying density of states within the wavelength-scale reflector is mapped and its impact discussed. In addition, it is demonstrated that changing the characteristic size of the reflector within the range from 0.5 to 1.5 times the emission wavelength has a strong bearing on the optimum emitter position, a position that does not in general coincide with the parabola’s focus. We calculate that the optimal antenna size and emitter position allow for the maximum directed power to exceed that obtained in the geometrical optics regime.DysonEngineering and Physical Sciences Research Council (EPSRC

    Superpixel-based spatial amplitude and phase modulation using a digital micromirror device.

    Get PDF
    This is the final version of the article. Available via open access from Optical Society of America via the DOI in this record.We present a superpixel method for full spatial phase and amplitude control of a light beam using a digital micromirror device (DMD) combined with a spatial filter. We combine square regions of nearby micromirrors into superpixels by low pass filtering in a Fourier plane of the DMD. At each superpixel we are able to independently modulate the phase and the amplitude of light, while retaining a high resolution and the very high speed of a DMD. The method achieves a measured fidelity F = 0.98 for a target field with fully independent phase and amplitude at a resolution of 8 × 8 pixels per diffraction limited spot. For the LG10 orbital angular momentum mode the calculated fidelity is F = 0.99993, using 768 × 768 DMD pixels. The superpixel method reduces the errors when compared to the state of the art Lee holography method for these test fields by 50% and 18%, with a comparable light efficiency of around 5%. Our control software is publicly available.We thank Duygu Akbulut, Hasan Yılmaz, Henri Thyrrestrup, Michael J. Van De Graaff, Pepijn W.H. Pinkse, Ad Lagendijk and Willem L. Vos for discussions. This work is part of the research program of the Stichting voor Fundamenteel Onderzoek der Materie (FOM). A.P.M. acknowledges European Research Council grant no. 279248

    Bloch oscillations of backward volume magnetostatic spin waves

    Get PDF
    This is the final version. Available from the American Physical Society via the DOI in this recordWe have used numerical micromagnetic simulations to propose a feasible candidate system in which Bloch oscillations of spin waves could be observed experimentally. Our simulations demonstrate these phenomena for backward volume magnetostatic spin waves (BVMSWs) in a film of yttrium-iron-garnet in a spatially varying bias magnetic field comprising a sinusoidal and gradient contributions. Despite the complex character of the BVMSW dispersion relation, the spin-wave packets are distinctly confined by the field gradient, while showing only minor broadening over the simulation time.Engineering and Physical Sciences Research Council (EPSRC)European Union Horizon 202

    Correlations between reflected and transmitted intensity patterns emerging from opaque disordered media

    Get PDF
    The propagation of monochromatic light through a scattering medium produces speckle patterns in reflection and transmission, and the apparent randomness of these patterns prevents direct imaging through thick turbid media. Yet, since elastic multiple scattering is fundamentally a linear and deterministic process, information is not lost but distributed among many degrees of freedom that can be resolved and manipulated. Here we demonstrate experimentally that the reflected and transmitted speckle patterns are correlated, even for opaque media with thickness much larger than the transport mean free path, proving that information survives the multiple scattering process and can be recovered. The existence of mutual information between the two sides of a scattering medium opens up new possibilities for the control of transmitted light without any feedback from the target side, but using only information gathered from the reflected speckle.Comment: 6 pages, 4 figure

    Role of Anisotropy and Refractive Index in Scattering and Whiteness Optimization

    Get PDF
    This is the final version. Available from Wiley via the DOI in this record.The ability to manipulate light–matter interaction to tailor the scattering properties of materials is crucial to many aspects of everyday life, from paints to lighting, and to many fundamental concepts in disordered photonics. Light transport and scattering in a granular disordered medium are dictated by the spatial distribution (structure factor) and the scattering properties (form factor and refractive index) of its building blocks. As yet, however, the importance of anisotropy in such systems has not been considered. Here, a systematic numerical survey that disentangles and quantifies the role of different kinds and degrees of anisotropy in scattering optimization is reported. It is shown that ensembles of uncorrelated, anisotropic particles with nematic ordering enables to increase by 20% the reflectance of low-refractive index media (n = 1.55), using only three-quarters of material compared to their isotropic counterpart. Additionally, these systems exhibit a whiteness comparable to conventionally used high-refractive index media, e.g., TiO2 (n = 2.60). Therefore, the findings not only provide an understanding of the role of anisotropy in scattering optimization, but they also showcase a novel strategy to replace inorganic white enhancers with sustainable and biocompatible products made of biopolymers.Biotechnology and Biological Sciences Research Council (BBSRC)European Research Council (ERC)Leverhulme Trus

    Scattering Lens Resolves sub-100 nm Structures with Visible Light

    Full text link
    The smallest structures that conventional lenses are able to optically resolve are of the order of 200 nm. We introduce a new type of lens that exploits multiple scattering of light to generate a scanning nano-sized optical focus. With an experimental realization of this lens in gallium phosphide we have succeeded to image gold nanoparticles at 97 nm optical resolution. Our work is the first lens that provides a resolution in the nanometer regime at visible wavelengths.Comment: 4 pages, 3 figure
    • 

    corecore